Lyapunov Decomposition of Measures on Effect Algebras
نویسندگان
چکیده
We prove that every closed exhaustive vector-valued modular measure on a lattice ordered effect algebra L can be decomposed into the sum of a Lyapunov exhaustive modular measure (i.e. its restriction to every interval of L has convex range) and an ”antiLyapunov” exhaustive modular measure. This result extends a Kluvanek-Knowles decomposition theorem for measures on Boolean algebras.
منابع مشابه
Lyapunov measures on effect algebras
We prove a Lyapunov type theorem for modular measures on lattice ordered effect algebras.
متن کاملOn p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملC*-algebras on r-discrete Abelian Groupoids
We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...
متن کاملLectures on Lyapunov Exponents and Smooth Ergodic Theory
1. Lyapunov Exponents for Differential Equations 2. Abstract Theory of Lyapunov Exponents 3. Regularity of Lyapunov Exponents Associated with Differential Equations 4. Lyapunov Stability Theory 5. The Oseledets Decomposition 6. Dynamical Systems with Nonzero Lyapunov Exponents. Multiplicative Ergodic Theorem 7. Nonuniform Hyperbolicity. Regular Sets 8. Examples of Nonuniformly Hyperbolic System...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008